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1. INTRODUCTION 

One of the fundamental problems in clustering is its validation. This issue has been 

addressed by many researchers in different ways depending on the methods they use to solve the 

clustering problem, nevertheless the existing approaches are based on the introduction of a vali

dity function which is intented to measure the validity of the clustering obtained by the different 

methods. 

In the case of hierarchical methods, the validity function measures the compacity of the 

obtained partition. The methods based on graph theory lead for example to measures of connec

tivity, length of the chains, etc .. The methods based on objective functions usually use the objec

tive function itself as a validity function. Other well-known methods in the setting of fuzzy clus

tering are, the "degree of separability", the "partition coefficient", the "classification entropy" 

(Bezdek,l981). Such a variety of method-dependent and "ad hoc" measures of validity suggests 

that it is very difficult to obtain more general solutions to the "validity problems". But, before 

addressing the validity aspect we think that it is necessary to define what b a cluster! and 

only after that it makes sense to talk about how good b a cluster!. 

In our work we first address this issue and we give a new definition of fuzzy r-cluster that 

extend Ruspini's definition (Ruspini, 1982). Our definition is based on the new concept of indis

tinguishability relation (Trillas, 1982) which includes, as particular cases the concepts of similarity 

relation of Zadeh (Zadeh, 1971), probabilistic relation of Menger (Menger, 1951) and likeness rela

tion of Ruspini (Ruspini, 1982). 
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The main difficulty with the clustering process is that the data and the obtained partition 

are "separated'" by the algorithm that built such partition, consequently it is generally imposible 

to gain some insight about the "structure" or the data based only on the information available 

observing the obtained partition; and the existing methods do no look in general to the data but 

only the partition. 

The approach presented here is heavily based on the data themselves. First we construct an 

indistinguishability relation among a data set (that includes the prototypes or the clusters) based 

on the degree of membership, to the different clusters, of each element of the data set. Finally, we 

measure the validity comparing (through a distance measure) the degrees of membership of the 

data to the clusters, with the de~rees or indistinguishability between the data and the prototypes 

of each cluster. The basic idea is that the smaller the difference between the degrees of membership 

and the degrees of indistinguishability, the better the clustering. The intuitive reason can be 

expressed as follows: The degrees of membership of the elements to a cluster depend only on that 

cluster but, the degrees of indistinguishability between the elements and the prototypes or the 

clusters depend on the values of the degrees of membership of these elements and these proto

types with respect to all the clusters. Therefore. if these degrees are the same, the membership 

functions constitute a fuzzy cluster coverage (the counterpart, for indistinguishability relations, of 

partitions). And according to our definition, the clustering obtained is valid if the membership 

functions form a fuzzy cluster coverage. We have implemented an algorithm that, given the 

membership functions, measures the clustering validity and we give some results obtained with 

some examples. 

We also suggest that the validity measure obtained can be used to reconsider initial deci

sions about the election of the prototypes, the number of clusters, etc .. Also since, as we shall see, 

and as a "side effect" we get information about the logical and metric properties of the data, we 

could use such information in order to make a geometrical representation of the data (factor 

analysis, principal components, etc.). We start giving some definitions and theorems whose proofs 

are omitted because of space reasons (See Valverde, 1983). 

2. ON INDISTINGUISHABU..ITY RELATIONS 

2.1. A general definition of indistinguishability relations and their use in different fields can be 

found in (Trillas, 1982; Trillas and Valverde, 1983). Here we will be mainly concerned with a spe

cial kind of these relations: the F -indistinguishability relations. 

Definition 1. Given a non-empty set X, a map E from XxX into jO, 1] is called F

lndlatlngulahabllity relation if the following properties hold for any x,y and z in X: 

i) E( X ,y )= 1 ' 

ii) E(x,y)=E(y,x), and 

iii) F(E(x,y),E(y,z)) s·<=·$ E(x,z). 

That is, F -indistinguishability relations are simply fuzzy binary relations which are reflexive, 

symmetric and F-transitive, F being a continuous t-norm. Thus, similarity relations (Zadeh 1971) 

are F -indistinguishability relations with F(x,y )=Min(x,y ); the same applies to probabilistic rela

tions of indistinguishability (Menger 1951) with F(x,y)=x.y and likenes relations (Ruspini 198::!) 

with F(x,y)=Max(x+ y-1,0). 

It is well known that likeness relations were introduced in the framework of fuzzy clustering 

and, among other considerations, the rationale behind their definition is given by the fact: if E is 

a likeness relation on X, then $ d(x,y r = ·1-E(x,y) $ is a normalized pseudo-metric on X; that is 

such a relation is given by (and gives a) distance between the elements of X. In this way the 

notion or distance, which has long been used in many contexts as a measure or similarity, falls 

into the scope or some F -indistinguishability relations. Moreover, we have 

Theorem 1. Let d be a pseudo-distance on a set X, then 
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a)$ L sub d (x,y)"=.l/(1+ d(x,y)) $is a likeness relation on X, and viceversa. 

b)$ P sub d (x,yr=·exp(-d(x,y)) $is a probabilistic relation on X, and vice versa. 

F -indistinguishability relations with respect to t-norms different from the the t-norms 

corresponding to likeness and probabilistic relations do not, in general, give a pseudo-metric but a 

G-pseudometric: 

Defin£t£on 2. Given a continuous t-conorm G, a map from XxX into [0,1] is called a G

pseudometric if the following properties hold for any x ,y and z in X: 

i) m(x,x}=O, 

ii) m(x,y)=m(y,x), and 

iii) G(m(x,y),m(y,z)) $·>=·$ m(x,z). 

It can easily be seen that, for any continuous t-norm G, 

is a G-pseudometric on [0,1J, where f is a continuous and strictly decreasing bijection from [0,1] 

into itsetr, and$ G sup.,.,$ is the quasi-inverse of G, i.e. $ G sup, • ., (xTyr=·lnf "{"a epsi

lon [0,1JTG(a,xr>=·y·"}" $ 

The links between G-pseudometrics and F -indistinguishability relations are described in the 

following theorem: 

Theorem 2. Let m be a G-pseudometric on a set X. Then, for any continuous and strictly 

decreasing bijection, r, from [0,1] into itself, $ E(x,yr=·f(m(x,y)) $ is an F-indistinguishability 

relation with respect to$ F(x,yr=·f sup {-1} (G(r(x),f(y)) $and vice versa. 

That is, any F -indistinguishability relation on a set X is determined, up to an order

reversing bijection on the unit interval, by a G-pseudometric and vice versa. 

2.2. In (Ruspini 1982) the concept of fuzzy r-cluster is introduced in the following way: given a 

reflexive and symetric fuzzy relation r on X, a fuzzy subset g of X is called fuzzy r-cluster if the 

following properties hold for any x,y and z in X: 

a) If g(x)=l then g(y)=r(x,y), 

b) Sl.g(xr-·g(y)T<=·r-·r(x,y). $ 

It is shown that the family of similarity classes given by any likeness relation r (i.e. the 

fuzzy subsets of X defined by$ g sub x (yr=·r(x,y) $)satisfies the two properties: 

i) $ Sup sub { x epsilon X} g sub x (yr=·1 $and $Sup sub {y epsilon X} g sub x 

(y r = .1 $ (i.e. $ "{" g sub X , }"' sub {x epsilon X} $ is a fuzzy coverage or X). 

ii) For any $ x epsilon X $, $ g sub x $ is a fuzzy r-cluster. 

Conversely, if for a given reflexive and symmetric relation r there exists a fuzzy coverage of X 

satisfying the above property, then r should be a likeness relation. 

Thus, fuzzy r-clusters are the counterpart, for likeness relations, of classical clusters 

(equivalence classes with respect to an equivalence relation). In order to extend these results to 

any F-indistinguishability relation, let be noticed that Ruspini's definition involves a particular 

metric in the unit interval, the restriction to the Euclidean distance. In fact, this definition may 

be viewed as a generalization or the definition or classical clusters because, at is easy to show' 

classical clusters can be characterized by means or 

a) If$ mu sub A (x)'=·1 $then$ mu sub A (y)'=·mu sub R (x,y) $, 

b)$ d sub o ( mu sub A (x), mu sub A (y))' <=·1- mu sub R (x,y) $, 

where $ mu sub A $ is the characteristic function or the set A and $ d sub o $ is the discrete dis

tance on the two-point set {0,1}. 
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Thus, by taking different metrics, different kinds of fuzzy r-clusters and, therefore, different 

kinds of F -indistinguishability relations r will be obtained: 

Definition 3. Let r be a reflexive and symmetric fuzzy relation on X. For a given continuous t

conorm G, a fuzzy subset g of X will be termed fuzzy r-cluster with respect to $ m sub G 

(a,b)"=·G sup,., (C(Max(a,b))Tf(Min(a,b))) $, iC the following properties hold for any x andy 

in X: 

a) If g(x)=l then g(y)=r(x,y), 

b) S m sub G (g(x),g(yJr < =·f(r(x,y)) $. 

A fuzzy r-cluater coverage will be a fuzzy coverage of X such that each of its elements is a 

fuzzy r-cluster. 

This definition extends Ruspini's definition, that is we have: 

Theorem 3. For a given F-indistinguishability relation ron X, the family$ C sub r ·=·"{"g sub 

x epsilon [O,lJ sup X T x epsilon X"}" $,where$ g sub x (y)"=·r(x,y) $,is a fuzzy r-cluster 

coverage of X with respect to$ m sub G $,where S G(x,y)"=·r sup {-1} (F(f(x),f(y))) $. 

Conversely, we have 

Theorem ,4. Let C be a fuzzy coverage of X and r a reflexive and symmetric fuzzy relation on X. 

If every element of C is a fuzzy r-cluster with respect to $ m sub G $, then r is a F

indistinguishability relation, where$ F(x,yf=·r(G(f sup {-1} (x),f sup {-1} (y))) $. 

EXAMPLES 

(El) If$ G(a,bf=·Min(a+ b,l) $and$ f(af=·l-a $,then 

and r is a likeness relation. 

(E2) If$ G(a,bf=.Ma.x(a,b) $,then 

and r is a similarity relation. 

(E3) If$ G(a,bf=·a+ b-ab $and$ r(af=·1-a $,then 

and r is a probabilistic relation. 

2.3. Our approach is heavily based on the representation theorems for F -indistinguishability 

operators (Ovchinnikov, 1982; Valverde, 1982) which provide a way to construct F

indistinguishability operators. The following is the second author formulation of that result: 

Theorem S.(Rtpresentation theorem). Let r be a reflexive fuzzy relation on X and let F be a con

tinuous t-norm. Then r is a F -indistinguishability relation on X if, and only if, there exists a fam

ily of fuzzy subsets of X, $ (h sub j ) sub {j epsilon J} $, such that 

where S F sup ,., $ is the quasi-inverse ofF, 1.e. $ F sup ,., (xTyf=·Sup"{"a epsilon 

[O,lJT F(a,x)"<=·y"}" $. 

Consequently, given a continuous t-norm F, we can associate a F-indistinguishability rela

tion with any family of fuzzy subsets of X and, therefore, a fuzzy r-cluster coverage with respect 

to some G-metric of X is obtained. 

EXAMPLES 
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(E4) If $F(a,b)"=.Min(a,b) $, then the F-indistinguishability relation associated to$ (h sub j ) 

sub {j epsilon J} $, $ h sub j epsilon [0,1J sup X $, is given by 

where $ J sub xy ·=·"{"j epsilon JTh sub j (xr != ·h sub j (y)"}" $. 

(E5) Ir $ F(a,br=·a.b $,then 

(E6) Ir $ F(a,br=·Max(a+ b-1,0) $,then 

We remark that, since F -indistinguishability relations and G-pseudometrics are dual con

cepts, theorem 5 provides also a representation for any G-pseudometric. 

3. CLUSTER VALIDITY 

The previous theorem can be rephrased as follows: To any family of fuzzy subsets (member

ship functions) of X and for any continuous t-norm F, we can associate a fuzzy cluster cover

age of X and, by duality, a G-pseudometric, i.e. a distance between the elements or X. 

The basic principle underlying the cluster validity is given in the following 

Proposition. I( the membership functions $ "{" h sub j "}" sub {j epsilon J} $ constitute a fuzzy 

cluster coverage, then there exists at-norm, F, such that the degree of membership $ h sub j (x) $ 

o( an element x with respect to the cluster j is the same as the degree of indistinguishability (with 

respect to the indistinguishability operator generated by F) between this element x and the proto

type or the cluster j. 

In general the family $ "{" h sub j "}" sub {j epsilon J} $ o( membership functions do not 

constitute a fuzzy coverage and, therefore, the degrees of membership and the degrees o( indis

tinguishability will not coincide. Then we state the following 

Principle The best t-norm to be used to generate the fuzzy coverage associated with the family $ 

"{" h sub j "}" sub {j epsilon J} $will be that which corresponds to the smallest distance (using 

the corresponding $ m sub G $ ) between the $ "{" h sub j "}" sub {j epsilon J} $ and the 

correspondig $ "{" g sub j "}" sub {j epsilon J} $ in the indistinguishability relation. 

Remark. We detect at the same time the best logic (best t-norm, best t-conorm) and the best 

topology($ m sub G $)underlying the structure of the data set X. 

ALGORITHM. Given a family $ "{" F sub lambda "}" sub {lambda epsilon GAMMA} $oft

norms such that$ F sub lambda>= F sub {lambda primerir lambda <= lambda prime$ , 

and the family $ "{" h sub j "}" sub {j epsilon J} $of membership functions, do the following for 

each t-norm: 

(1) Construct the corresponding $ F sub lambda $-indistinguishability relation. 

(2) For each cluster j, calculate the local distance 
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where lXI is the cardinal of the data set X and $ m sub { G sub lambda} $ is the distance 

associated with the t-norm $ F sub lambda $ (for a fixed order-reversing bijection r form the 

unit interval into itself). 

(3) Calculate the global distance 

where IJI is the number of classes. 

(4) Select the set of $ lambda 's $ such that $ D sup lambda $ is minimum, and among these, 

the biggest one. The reason for choosing the biggest $ lambda $ is the following: if $ 

lambda < = lambda prime $ then $ F sub lambda > = F sub lambda prime $, therefore $ 

G sub lambda <= G sub lambda prime $ and this implies that $ m sub {G sub lambda} 

> = m sub { G sub {lambda prime}} $ (as it has been shown in (Valverde 1983)). That is, a 

fuzzy coverage with respect to $ F sub lambda $ is also a fuzzy coverage with respect to $ F 

sub {lambda prime} $, but the values of the distances measured using $ m sub { G sub 

lambda} $are bigger, in other words we say that$ --m sub {G sub lambda} $has a higher 

resolution power than$ m sub {G sub {lambda prime}}$. 

EXAMPLES 

We have tried our appoach with several examples involving two clusters, and we have con-

sidered 3 different t-norms: 

$ trF(x,y)'='Min(x,y) $ 

$ 2rF(x,y)'='x.y $ 

$ 3rF(x,y)'='Max(x+y-t,o) S. 

The order-reversing bijection from the unit interval into itself we have used is $ f(x )' = '1-x 

$, so the corresponding t-conorms are: 

$ 1 prime ra(x,y)'= 'Max(x,y) $ 

$ 2 prime ra(x,y)'='x+y-x.y $ 

$3 prime ra(x,y)'='Min(x+y,l) $. 

In almost all cases, the best t-norm is the last one of the previous three, and corresponds 

precisely to the logic of Lukasiewicz Aleph-1, and the corresponding$ m sub G $is the restriction 

to the unit interval of the Euclidean distance. 

allbox; c s s c c c c n n. DATA SAMPLE #1 S $ h sub 1 U h sub 2 $ $ x sub 1 $0.10 0.60 $ 

x sub 2 $0.60 0.10 $ x sub 3 $0.10 0.00 $ x sub 4 $0.30 0.40 $ x sub 5 $0.30 0.90 $ x sub 6 

$0.10 0.60 $ x sub 7 $0.60 0.10 $ x sub 8 $0.40 0.20 $ x sub 9 $0.30 0.80 
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allbox; C C C C S S 8 S 8 S C C C C C C C C C C C D D D D D D D D D. DS #1 

$ $ F(x,y)'=·Min(x,y) $ r($ xi$,$ xj $) 

$ $ x6 $ $ x7 $$ x8 $$ x9 $ $ x1 $ 
$ x2 $ 0.1 1 0.1 

$ 0.1 0.1 1 0.1 0.1 0.1 0.1 

$ 0.1 0.1 0.1 1 0.4 0.1 0.1 

$ 0.1 0.1 0.1 0.4 1 0.1 0.1 

$ 1 0.1 0.1 0.1 0.1 1 0.1 

$ 0.1 0.1 0.1 0.1 0.1 0.1 1 

$ 0.1 0.1 0.1 0.2 0.2 0.1 0.1 

$ 0.1 0.1 0.1 0.4 0.8 0.1 0.1 

Cluster #1: $ d sub 1 sup lambda ·=·0.90 $ 

Cluster #2: $ d sub 2 sup lambda ·=·0.90 $ 

$ D sup lambda ·= ·o.90 $ 

$ x1 $ $ x2 $ $ x3 $ 
1 0.1 0.1 0.1 0.1 

0.1 0.1 0.1 0.1 0.1 0.1 
0.1 0.1 $ 
0.2 0.4 $ 
0.2 0.8 $ 
0.1 0.1 $ 
0.1 0.1 $ 
1 0.2 $ 
0.2 1 

$ gll $ $ g21 
$ x4 $ $ x5 

1 0.1 0.1 0.1 
$ x3 

x4 
x5 
x6 
x7 
x8 
x9 
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allbox; c c c c 5 5 s 5 s s c c c c c c c c c c c n n n n n n n n n. DS #1 

$ $ F(x,y )" = 'xy $ r($ xi $,$ xj $) $ xi $ S x2 $ $ x3 S 

• $ x6 $ $ x7 $$ x8 U x9 $ S x1 S 1 0.17 0.67 0.33 0.33 

$ x2 $ 0.17 1 0.11 0.25 O.llp0.17 

• 0.67 0.11 1 0.33 0.33 0.67 0.11 0.22 0.33 

$ 0.33 0.25 0.33 1 0.44 0.33 0.25 

• 0.33 0.11 0.33 0.44 1 0.33 0.11 

• 1 0.17 0.67 0.33 0.33 1 0.17 

$ 0.17 1 0.11 0.25 0.11 0.17 1 

$ 0.25 0.5 0.22 0.5 0.25 0.25 0.5 

$ 0.33 0.13 0.33 0.5 0.89 0.33 0.13 

Cluster #1: $ d sub 1 sup lambda ·= '0.446 $ 

Cluster #2: $ d sub 2 sup lambda ·= '0.685 $ 

$ D sup lambda ·= '0.565 $ 

0 .. 5 0.5 
0.25 0.89 
0.25 0.33 
0.5 0.13 
1 0.25 
0.25 1 

1 0.5 0.13 
$ 
$ 
$ 
$ 
$ 
$ 

allbox; c c c c 5 s s s s 5 e e e c c c e c e c c n n n n n n n n n. DS #1 

$ $ F(x,yr= 'Max(x+ y-1,0) $ r($ xi $,$ xj $) 
$ $ x5 $ $ x6 $ $ 

$ 1 0.5 0.7 0.8 0.7 1 0.5 

$ 0.5 1 0.2 0.7 0.2 0.5 1 

$ 0.7 0.2 1 0.5 0.8 0.7 0.2 

$ 0.8 0.7 0.5 1 0.5 0.8 0.7 

$ 0.7 0.2 0.8 0.5 1 0.7 0.2 

$ 1 0.5 0.7 0.8 0.7 1 0.5 

$ 0.5 1 0.2 0.7 0.2 0.5 1 

$ 0.6 0.8 0.3 0.8 0.3 0.6 0.8 

$ 0.8 0.3 0.8 0.6 0.9 0.8 0.3 

Cluster #1: $ d sub 1 sup lambda '='0.467 $ 

Cluster #2: $ d sub 2 sup lambda ·=·0.533 $ 

$ D sup lambda ·= ·o.5oo $ 

x7 
0.6 0.8 
0.8 0.3 
0.3 0.8 
0.8 0.6 
0.3 0.9 
0.6 0.8 
0.8 0.3 
1 0.4 
0.4 1 

$ x1 $ $ x2 $ 
$$ x8 $$ 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

$ gil $ $ g21 
S x4 $ $ x5 

1 0.17 0.25 0.33 
$ x3 

x4 
x5 
x6 
x7 
x8 
x9 

$ gil $ $ g21 
$ x3 $ $ x4 

x9 $ $ x1 
x2 
x3 
x4 
x5 
x6 
x7 
x8 
x9 
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allbox; c s s c c c c n n. DATA SAMPLE #2 S $ h sub 1 $$ h sub 2 $ $ xl $ 0 $ 
x2 $ 0 1 $ x3 $ 0.80 0.10 $ x4 $ 0.90 0.20 $ x5 $ 0.50 0.90 $ x6 
$ 0.40 0.90 $ x7 $ 0.10 0.80 $ x8 $ 0.50 0.70 

allbox; c c c c s s s s s c c c c c c c c c c n n n n n n n n. DS #2 
F(x,y)"="Min(x,y) $ r( $xi$,$ xj $) $ x1 $ 
x6 $ $ x7 $$ x8 $ $ x1 $ 
$ 0 1 0 0 0 0 0 

$ 0 0 1 0.1 0.1 0.1 0.1 

$ 0 0 0.1 1 0.2 0.2 0.1 

$ 0 0 0.1 0.2 1 0.4 0.1 

$ 0 0 0.1 0.2 0.4 1 0.1 

$ 0 0 0.1 0.1 0.1 0.1 1 

$ 0 0 0.1 0.2 0.7 0.4 0.1 

Cluster #1: $ d sub 1 sup lambda ·=·0.75 $ 

Cluster #2: $ d sub 2 sup lambda ·= ·o.75 $ 

$ D sup lambda ·=·0.75 $ 

$ x2 $ $ x3 $ 
1 0 0 0 

0 
0.1 
0.2 
0.7 
0.4 
0.1 
1 

allbox; c c c c s s s s s c c c c c c c c c c n n n n n n n n. DS #2 
F(x,y )" = ·xy $ r( $ xi $,$ xj $) $ xl $ 
$ $ x7 $$ x8 $ $ xi $ 
$ 0 1 0 0 0 0 0 
$ 0 0 1 0.5 0.11 0.11 0.13 

$ 0 0 0.5 1 0.22 0.22 0.13 

$ 0 0 0.11 0.22 1 0.8 0.2 
$ 0 0 0.11 0.22 0.8 1 0.25 

$ 0 0 0.13 0.13 0.2 0.25 1 
$ 0 0 0.14 0.29 0.78 0.78 0.2 

Cluster #1: $ d sub 1 sup lambda ·=-0.40 $ 

Cluster #2: $ d sub 2 sup lambda ·= "0.45 $ 

$ D sup lambda · = "0.425 $ 

$ x2 $ $ x3 $ 
1 0 0 0 

0 
0.14 
0.29 
0.78 
0.78 
0.2 
1 

$ gil $ $ g21 $ $ 
$ x4 $ $ x5 $ $ 

0 0 0 0 $ x2 
$ x3 
$ x4 
$ x5 
$ x6 
$ x7 
$ x8 

$ gll $ $ g21 $ $ 
$ x4 $ $ x5 $ $ x6 
0 0 0 0 $ x2 
$ x3 

$ x4 
$ x5 
$ x6 
$ x7 
$ x8 
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allbox; c C C C S S S S S C C C C C C C C C C D D D D D D D D. DS #2 
F(x,y)'='Max(x+ y-1,0) $ r($ xi $,$ xj $) 

• $ x6 $ $ x7 $$ x8 $ $ x1 • • 0 1 0.1 0.1 0.5 0.6 0.8 

• 0.8 0.1 1 0.9 0.2 0.2 0.3 
$ 0.8 0.1 0.9 1 0.3 0.3 0.2 

• 0.1 0.5 0.2 0.3 1 0.9 0.6 

• 0.1 0.6 0.2 0.3 0.9 1 0.7 
$ 0.1 0.8 0.3 0.2 0.6 0.7 1 
$ 0.3 0.5 0.4 0.5 0.8 0.8 0.6 

Cluster #1: $ d sub 1 sup lambda ·=·0.125 $ 

Cluster #2: $ d sub 2 sup lambda ·=·0.125 $ 

$ D sup lambda ·= ·o.125 $ 

Concluding remar lea. 

$ x1 $ $ x2 $ 
1 0 0.8 0.8 

0.5 
0.4 
0.5 
0.8 
0.8 
0.6 
1 

$ gll $ $ g21 $ $ 
$ x3 $ $ x4 $ $ x5 

0.1 0.1 0.1 0.3 $ x2 
$ x3 

• x4 
$ x5 
$ x6 
$ x7 
$ x8 

We have generalized some previous results of Ruspini and others in fuzzy clustering, using 
the new concept of indistinguishability relation based on the concept of t-norm and also we have 
studied its metrical properties through the dual concept of t-conorm that leads to G
pseudometrics. From the concept of G-pseudometric we have defined fuzzy r-clusters and fuzzy 
cluster coverages. Finally, we have proposed a measure of cluster validity based on the concept of 

fuzzy coverage. 

It is important to notice that the process of measuring the validity is carried out before any 
decision concerning the assignments of elements to the clusters. Therefore we can postpone the 

decision step until we have an acceptable cluster validity. That is, we have a sort of closed loop in 
the sens~ that a bad measure of validity obliges the user to reconsider previous hypothesis like, 
for example, the number of clusters, the values of the prototypes, etc .. Right now we are studying 
this "close loop" aspect in the setting of different classification algorithms. 
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